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Evolution Strategies in a Nutshell

position m ∈ Rn

scale / step size σ > 0
shape C ∈ Rn×n

paths pc , ps

repeat
sample offspring x1, . . . , xλ ∼ N (m, σ2C )
rank by fitness
update evolution paths
update mean m
update step size σ
(update covariance matrix C )

until stopping criterion is met
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Behavior and Invariance
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An Actual Run
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Evolution Strategies in a Nutshell

Local optima of a C2 function are approximately convex quadratic.

Therefore, analyzing the Sphere function is very meaningful.

However, there is more than that!

Ignored: multi-modality, asymmetry, plateaus, noise, ...

First things first: this talk is mainly about the Sphere function.
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Questions to our Runtime Analysis

scaling with problem dimension

dependence on problem instance

convergence rate

duration of transient adaptation phase
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Markov Chains

Auger, Anne. “Convergence results for the (1, λ)-SA-ES using the theory of ϕ-irreducible
Markov chains.” Theoretical Computer Science 334.1-3 (2005): 35-69.

Chotard, Alexandre, and Anne Auger. “Verifiable conditions for the irreducibility and
aperiodicity of Markov chains by analyzing underlying deterministic models.” Bernoulli
25(1) (2019): 112-147.

Gissler, Armand. Linear convergence of evolution strategies with covariance matrix
adaptation. Diss. École polytechnique, 2024.
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The Normalized Chain

Convergence on the Sphere is a scale-invariant process: σ ∝ ∥m∥.

Problem decomposition:
behavior of ∥m∥ −→ optimization progress
behavior of θ = m/σ −→ stability

Normalized state with CMA:

θ =

(
m√

λmin(
√
HC

√
H)·σ

,
√
HC

√
H

λmin(
√
HC

√
H)

)
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Proof Logic

1 Stability ⇔ θ follows a stable limit distribution.

Task: prove irreducibility, aperidocity, (Harris-)recurrence, geometric ergodicity.

2 For fixed θ, the change of ∥m∥ is scale-invariant, resulting in an additive change of
log(∥m∥). It exhibits either linear convergence or divergence.

The same holds for the expectation over θ.
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Achievements

Linear convergence of CMA-ES at a rate that is independent of the problem
instance (independent of the Hessian H).

CMA helps, it achieves what it was designed for.

No control over the limit distribution and over

E[log(∥m(t)∥)− log(∥m(t+1)∥)].

No convergence rate, no dependency on the dimension.

No control over the time to reach the stable limit distribution.
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Drift Analysis

Jägersküpper, Jens. “How the (1+1)-ES using isotropic mutations minimizes positive
definite quadratic forms.” Theoretical Computer Science 361.1 (2006): 38-56.

Akimoto, Youhei, Anne Auger, and Tobias Glasmachers. “Drift theory in continuous
search spaces: expected hitting time of the (1+1)-ES with 1/5 success rule.” Proceedings
of the Genetic and Evolutionary Computation Conference. 2018.

Morinaga, Daiki, and Youhei Akimoto. “Generalized drift analysis in continuous domain:
linear convergence of (1+1)-ES on strongly convex functions with Lipschitz continuous
gradients.” Proceedings of the 15th ACM/SIGEVO Conference on Foundations of Genetic
Algorithms. 2019.

Morinaga, Daiki, et al. “Convergence rate of the (1+1)-evolution strategy with
success-based step-size adaptation on convex quadratic functions.” Proceedings of the
Genetic and Evolutionary Computation Conference. 2021.
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startgoal

Theorem (Additive Drift, Upper Bound with Overshooting; Doerr and Kötzing 2021)

Let (X (t))t∈N be an integrable process over R, and let

T = inf
{
t ∈ N

∣∣∣X (t) ≤ β
}

for some β ∈ R. Furthermore, there is a δ > 0 such that, for all t < T , it holds that

0 < δ ≤ E
[
X (t) − X (t+1)

∣∣∣X (0), . . . ,X (t)
]
.

Then

E[T ] ≤ E[X (0)]− E[X (T )]

δ
.
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Proof Logic

Same problem decomposition as for Markov chains.

Apply additive drift to a potential function

V (∥m∥, θ) = log(∥m∥) + Ψ(θ)

with Ψ ≥ 0.

If V decays by δ > 0 in expectation then at some point log(∥m∥) decays by δ > 0.
We obtain linear convergence at rate e−δ < 1.

Note: V is unbounded, and single-iteration changes are unbounded.
Calls for additive drift with overshooting.
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Proof Logic (continued)

Task: construct a suitable Ψ(θ).

Task: show that a drift δ > 0 exists.

The form of Ψ(θ) with CMA is an open problem.

The extension to strongly convex functions with Lipschitz continuous gradients
does not change the overall proof logic too much.
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Achievements

Correct dependency on dimension and problem characteristics.

Convergence rate and duration of the adaptation phase can be bounded.

No analysis of CMA (as of today).
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The Quest for the Penalty Term



The Route

How to approach this problem?
Pull a penalty term Ψ out of the hat and then...?
Options:

1 Deductive approach
Try to make the proof work.

2 Inductive approach
Simulate/approximate the drift to empirically verify that δ > 0 exists.
Then think about a proof, otherwise refine.

Which route should we take?
“It depends on how fast you think.”

I decided to take the inductive route.
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Grid Interpolation

1 guess a potential function

2 estimate drift on a grid in state space (Monte Carlo simulation)

3 visualize the result
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Grid Interpolation

σ

κ1e+0 1e+1
1e-1

1e+0

1e+1
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Optimal (Canonical) Drift

There is a very simple way of realizing optimal additive drift:
define the potential to be the expected hitting time.

The construction yields an optimally tight (lower and upper) bound using only
simple additive drift.

Problem: the potential V is not an explicit function of the state (m, σ,C ) — no
closed form expression.
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(1+1)-EA on OneMax
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(1+1)-EA on LeadingOnes
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(1+1)-EA on BinaryValue
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Canonical Drift on the Grid

1 Transfer the canonical potential paradigm to the grid approach!

2 Ansatz: Ψ is parameterized by values on the grid + linear interpolation.

3 Using MC simulation data, we can solve the system.
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(1+1)-ES on Sphere
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(1+1)-ES on Sphere
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Technicalities

Choice of the grid (range and density) turn out to be uncritical.

Replaced MC integration with a “proper” numerical scheme with a-priori controlled
error.

Floating point errors are currently ignored.

Controlled effect of integration error on the penalty term.
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Towards Provable Drift

We aim to turn the technique into a
computer-assisted proof.

Interpolation: Lipschitz constant of the drift
controls gaps in between grid points.

Extrapolation: control asymptotic effects beyond the grid.

Only possible in low dimensions (likely only n = 2).
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Achievements

It is possible to analyze CMA this way.
A first study (Bachelor thesis) is on its way.

Convergence rate and duration of the adaptation phase can be bounded.

No (analytic) dependency on parameters (dimension, problem instance).

Computationally feasible only in dimension 2.
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Conclusions

The analysis of CMA-ES is progressing significantly.

Convergence is solved!

Drift for CMA-ES would be a valuable addition...

...but it is still an open problem.
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Thanks
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Stephan Frank

Alexander Jungeilges
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Thank you!
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Thank you!

Questions?


