Additive drift is all you need if you are an evolution strategy

FOGA August 2025

Tobias Glasmachers Ruhr-University Bochum

Additive drift is all you need if you are an evolution strategy

FOGA

August 2025

including two images generated with A!

Tobias Glasmachers Ruhr-University Bochum

Runtime Analysis

Outline

- Evolution Strategies
- Analysis: Methods and Results
- The case of CMA-ES
- Construction of the Potential

```
position m \in \mathbb{R}^n
scale / step size \sigma > 0
shape C \in \mathbb{R}^{n \times n}
paths p_c, p_s
```

```
position m \in \mathbb{R}^n

scale / step size \sigma > 0

shape C \in \mathbb{R}^{n \times n}

paths p_c, p_s

repeat

sample offspring x_1, \dots, x_{\lambda} \sim \mathcal{N}(m, \sigma^2 C)

rank by fitness
```

```
position m \in \mathbb{R}^n

scale / step size \sigma > 0

shape C \in \mathbb{R}^{n \times n}

paths p_c, p_s

repeat

sample offspring x_1, \dots, x_{\lambda} \sim \mathcal{N}(m, \sigma^2 C)

rank by fitness

update evolution paths
```

```
position m \in \mathbb{R}^n
scale / step size \sigma > 0
shape C \in \mathbb{R}^{n \times n}
paths p_c, p_s
repeat
    sample offspring x_1, \ldots, x_{\lambda} \sim \mathcal{N}(m, \sigma^2 C)
    rank by fitness
    update evolution paths
    update mean m
    update step size \sigma
     (update covariance matrix C)
until stopping criterion is met
```


An Actual Run

ullet Local optima of a \mathcal{C}^2 function are approximately convex quadratic.

- ullet Local optima of a \mathcal{C}^2 function are approximately convex quadratic.
- Therefore, analyzing the Sphere function is very meaningful.

- ullet Local optima of a \mathcal{C}^2 function are approximately convex quadratic.
- Therefore, analyzing the Sphere function is very meaningful.
- However, there is more than that!

- ullet Local optima of a \mathcal{C}^2 function are approximately convex quadratic.
- Therefore, analyzing the Sphere function is very meaningful.
- However, there is more than that!
- Ignored: multi-modality, asymmetry, plateaus, noise, ...

- ullet Local optima of a \mathcal{C}^2 function are approximately convex quadratic.
- Therefore, analyzing the Sphere function is very meaningful.
- However, there is more than that!
- Ignored: multi-modality, asymmetry, plateaus, noise, ...
- First things first: this talk is mainly about the Sphere function.

• scaling with problem dimension

- scaling with problem dimension
- dependence on problem instance

- scaling with problem dimension
- dependence on problem instance
- convergence rate

- scaling with problem dimension
- dependence on problem instance
- convergence rate
- duration of transient adaptation phase

Markov Chains

• Auger, Anne. "Convergence results for the $(1, \lambda)$ -SA-ES using the theory of ϕ -irreducible Markov chains." Theoretical Computer Science 334.1-3 (2005): 35-69.

Markov Chains

- Auger, Anne. "Convergence results for the $(1, \lambda)$ -SA-ES using the theory of ϕ -irreducible Markov chains." Theoretical Computer Science 334.1-3 (2005): 35-69.
- Chotard, Alexandre, and Anne Auger. "Verifiable conditions for the irreducibility and aperiodicity of Markov chains by analyzing underlying deterministic models." Bernoulli 25(1) (2019): 112-147.

Markov Chains

- Auger, Anne. "Convergence results for the $(1, \lambda)$ -SA-ES using the theory of ϕ -irreducible Markov chains." Theoretical Computer Science 334.1-3 (2005): 35-69.
- Chotard, Alexandre, and Anne Auger. "Verifiable conditions for the irreducibility and aperiodicity of Markov chains by analyzing underlying deterministic models." Bernoulli 25(1) (2019): 112-147.
- Gissler, Armand. Linear convergence of evolution strategies with covariance matrix adaptation. Diss. École polytechnique, 2024.

• Convergence on the Sphere is a scale-invariant process: $\sigma \propto \|m\|$.

- Convergence on the Sphere is a scale-invariant process: $\sigma \propto \|m\|$.
- Problem decomposition:
 - behavior of $||m|| \longrightarrow$ optimization progress
 - behavior of $\theta = m/\sigma \longrightarrow \text{stability}$

- Convergence on the Sphere is a scale-invariant process: $\sigma \propto \|m\|$.
- Problem decomposition:
 - behavior of $||m|| \longrightarrow$ optimization progress
 - behavior of $\theta = m/\sigma \longrightarrow \text{stability}$
- Normalized state with CMA:

$$\theta = \left(\frac{m}{\sqrt{\lambda_{\min}(\sqrt{H}C\sqrt{H})} \cdot \sigma}, \frac{\sqrt{H}C\sqrt{H}}{\lambda_{\min}(\sqrt{H}C\sqrt{H})}\right)$$

- Convergence on the Sphere is a scale-invariant process: $\sigma \propto ||m||$.
- Problem decomposition:
 - behavior of $||m|| \longrightarrow$ optimization progress
 - behavior of $\theta = m/\sigma$ \longrightarrow stability
- Normalized state with CMA:

$$\theta = \left(\frac{m}{\sqrt{\lambda_{\min}(\sqrt{H}C\sqrt{H})} \cdot \sigma}, \frac{\sqrt{H}C\sqrt{H}}{\lambda_{\min}(\sqrt{H}C\sqrt{H})}\right)$$

- Convergence on the Sphere is a scale-invariant process: $\sigma \propto \|m\|$.
- Problem decomposition:
 - behavior of $||m|| \longrightarrow$ optimization progress
 - behavior of $\theta = m/\sigma \longrightarrow \text{stability}$
- Normalized state with CMA:

$$\theta = \left(\frac{m}{\sqrt{\lambda_{\min}(\sqrt{H}C\sqrt{H})} \cdot \sigma}, \frac{\sqrt{H}C\sqrt{H}}{\lambda_{\min}(\sqrt{H}C\sqrt{H})}\right)$$

- Convergence on the Sphere is a scale-invariant process: $\sigma \propto ||m||$.
- Problem decomposition:
 - behavior of $||m|| \longrightarrow$ optimization progress
 - behavior of $\theta = m/\sigma$ \longrightarrow stability
- Normalized state with CMA:

$$\theta = \left(\frac{m}{\sqrt{\lambda_{\min}(\sqrt{H}C\sqrt{H})} \cdot \sigma}, \frac{\sqrt{H}C\sqrt{H}}{\lambda_{\min}(\sqrt{H}C\sqrt{H})}\right)$$

- Convergence on the Sphere is a scale-invariant process: $\sigma \propto ||m||$.
- Problem decomposition:
 - behavior of $||m|| \longrightarrow$ optimization progress
 - behavior of $\theta = m/\sigma$ \longrightarrow stability
- Normalized state with CMA:

$$\theta = \left(\frac{m}{\sqrt{\lambda_{\min}(\sqrt{H}C\sqrt{H})} \cdot \sigma}, \frac{\sqrt{H}C\sqrt{H}}{\lambda_{\min}(\sqrt{H}C\sqrt{H})}\right)$$

- Convergence on the Sphere is a scale-invariant process: $\sigma \propto ||m||$.
- Problem decomposition:
 - behavior of $||m|| \longrightarrow$ optimization progress
 - behavior of $\theta = m/\sigma$ \longrightarrow stability
- Normalized state with CMA:

$$\theta = \left(\frac{m}{\sqrt{\lambda_{\min}(\sqrt{H}C\sqrt{H})} \cdot \sigma}, \frac{\sqrt{H}C\sqrt{H}}{\lambda_{\min}(\sqrt{H}C\sqrt{H})}\right)$$

- Convergence on the Sphere is a scale-invariant process: $\sigma \propto ||m||$.
- Problem decomposition:
 - behavior of $||m|| \longrightarrow$ optimization progress
 - behavior of $\theta = m/\sigma$ \longrightarrow stability
- Normalized state with CMA:

$$\theta = \left(\frac{m}{\sqrt{\lambda_{\min}(\sqrt{H}C\sqrt{H})} \cdot \sigma}, \frac{\sqrt{H}C\sqrt{H}}{\lambda_{\min}(\sqrt{H}C\sqrt{H})}\right)$$

- Convergence on the Sphere is a scale-invariant process: $\sigma \propto ||m||$.
- Problem decomposition:
 - behavior of $||m|| \longrightarrow$ optimization progress
 - behavior of $\theta = m/\sigma$ \longrightarrow stability
- Normalized state with CMA:

$$\theta = \left(\frac{m}{\sqrt{\lambda_{\min}(\sqrt{H}C\sqrt{H})} \cdot \sigma}, \frac{\sqrt{H}C\sqrt{H}}{\lambda_{\min}(\sqrt{H}C\sqrt{H})}\right)$$

- Convergence on the Sphere is a scale-invariant process: $\sigma \propto \|m\|$.
- Problem decomposition:
 - behavior of $||m|| \longrightarrow$ optimization progress
 - behavior of $\theta = m/\sigma \longrightarrow \text{stability}$
- Normalized state with CMA:

$$\theta = \left(\frac{m}{\sqrt{\lambda_{\min}(\sqrt{H}C\sqrt{H})} \cdot \sigma}, \frac{\sqrt{H}C\sqrt{H}}{\lambda_{\min}(\sqrt{H}C\sqrt{H})}\right)$$

- Convergence on the Sphere is a scale-invariant process: $\sigma \propto \|m\|$.
- Problem decomposition:
 - behavior of $||m|| \longrightarrow$ optimization progress
 - behavior of $\theta = m/\sigma \longrightarrow \text{stability}$
- Normalized state with CMA:

$$\theta = \left(\frac{m}{\sqrt{\lambda_{\min}(\sqrt{H}C\sqrt{H})} \cdot \sigma}, \frac{\sqrt{H}C\sqrt{H}}{\lambda_{\min}(\sqrt{H}C\sqrt{H})}\right)$$

- Convergence on the Sphere is a scale-invariant process: $\sigma \propto \|m\|$.
- Problem decomposition:
 - behavior of $||m|| \longrightarrow$ optimization progress
 - behavior of $\theta = m/\sigma \longrightarrow \text{stability}$
- Normalized state with CMA:

$$\theta = \left(\frac{m}{\sqrt{\lambda_{\min}(\sqrt{H}C\sqrt{H})} \cdot \sigma}, \frac{\sqrt{H}C\sqrt{H}}{\lambda_{\min}(\sqrt{H}C\sqrt{H})}\right)$$

- Convergence on the Sphere is a scale-invariant process: $\sigma \propto \|m\|$.
- Problem decomposition:
 - behavior of $||m|| \longrightarrow$ optimization progress
 - behavior of $\theta = m/\sigma$ \longrightarrow stability
- Normalized state with CMA:

$$\theta = \left(\frac{m}{\sqrt{\lambda_{\min}(\sqrt{H}C\sqrt{H})} \cdot \sigma}, \frac{\sqrt{H}C\sqrt{H}}{\lambda_{\min}(\sqrt{H}C\sqrt{H})}\right)$$

- Convergence on the Sphere is a scale-invariant process: $\sigma \propto \|m\|$.
- Problem decomposition:
 - ullet behavior of $\|m\|$ \longrightarrow optimization progress
 - behavior of $\theta = m/\sigma \longrightarrow \text{stability}$
- Normalized state with CMA:

$$\theta = \left(\frac{m}{\sqrt{\lambda_{\min}(\sqrt{H}C\sqrt{H})} \cdot \sigma}, \frac{\sqrt{H}C\sqrt{H}}{\lambda_{\min}(\sqrt{H}C\sqrt{H})}\right)$$

- Convergence on the Sphere is a scale-invariant process: $\sigma \propto \|m\|$.
- Problem decomposition:
 - ullet behavior of $\|m\|$ \longrightarrow optimization progress
 - behavior of $\theta = m/\sigma$ \longrightarrow stability
- Normalized state with CMA:

$$\theta = \left(\frac{m}{\sqrt{\lambda_{\min}(\sqrt{H}C\sqrt{H})} \cdot \sigma}, \frac{\sqrt{H}C\sqrt{H}}{\lambda_{\min}(\sqrt{H}C\sqrt{H})}\right)$$

- Convergence on the Sphere is a scale-invariant process: $\sigma \propto \|m\|$.
- Problem decomposition:
 - behavior of $||m|| \longrightarrow$ optimization progress
 - behavior of $\theta = m/\sigma \longrightarrow \text{stability}$
- Normalized state with CMA:

$$\theta = \left(\frac{m}{\sqrt{\lambda_{\min}(\sqrt{H}C\sqrt{H})} \cdot \sigma}, \frac{\sqrt{H}C\sqrt{H}}{\lambda_{\min}(\sqrt{H}C\sqrt{H})}\right)$$

- Convergence on the Sphere is a scale-invariant process: $\sigma \propto \|m\|$.
- Problem decomposition:
 - behavior of $||m|| \longrightarrow$ optimization progress
 - behavior of $\theta = m/\sigma \longrightarrow \text{stability}$
- Normalized state with CMA:

$$\theta = \left(\frac{m}{\sqrt{\lambda_{\min}(\sqrt{H}C\sqrt{H})} \cdot \sigma}, \frac{\sqrt{H}C\sqrt{H}}{\lambda_{\min}(\sqrt{H}C\sqrt{H})}\right)$$

• Stability \Leftrightarrow θ follows a stable limit distribution.

Task: prove irreducibility, aperidocity, (Harris-)recurrence, geometric ergodicity.

• Stability \Leftrightarrow θ follows a stable limit distribution.

Task: prove irreducibility, aperidocity, (Harris-)recurrence, geometric ergodicity.

② For fixed θ , the change of ||m|| is scale-invariant, resulting in an additive change of $\log(||m||)$. It exhibits either linear convergence or divergence.

• Stability \Leftrightarrow θ follows a stable limit distribution.

Task: prove irreducibility, aperidocity, (Harris-)recurrence, geometric ergodicity.

② For fixed θ , the change of ||m|| is scale-invariant, resulting in an additive change of $\log(||m||)$. It exhibits either linear convergence or divergence.

The same holds for the expectation over θ .

• Linear convergence of CMA-ES at a rate that is independent of the problem instance (independent of the Hessian *H*).

• Linear convergence of CMA-ES at a rate that is independent of the problem instance (independent of the Hessian *H*).

CMA helps, it achieves what it was designed for.

• Linear convergence of CMA-ES at a rate that is independent of the problem instance (independent of the Hessian *H*).

CMA helps, it achieves what it was designed for.

No control over the limit distribution and over

$$\mathbb{E}[\log(\|m^{(t)}\|) - \log(\|m^{(t+1)}\|)].$$

• Linear convergence of CMA-ES at a rate that is independent of the problem instance (independent of the Hessian *H*).

CMA helps, it achieves what it was designed for.

No control over the limit distribution and over

$$\mathbb{E}[\log(\|m^{(t)}\|) - \log(\|m^{(t+1)}\|)].$$

No convergence rate, no dependency on the dimension.

• Linear convergence of CMA-ES at a rate that is independent of the problem instance (independent of the Hessian *H*).

CMA helps, it achieves what it was designed for.

No control over the limit distribution and over

$$\mathbb{E}[\log(\|m^{(t)}\|) - \log(\|m^{(t+1)}\|)].$$

No convergence rate, no dependency on the dimension.

No control over the time to reach the stable limit distribution.

• Jägersküpper, Jens. "How the (1+1)-ES using isotropic mutations minimizes positive definite quadratic forms." Theoretical Computer Science 361.1 (2006): 38-56.

- Jägersküpper, Jens. "How the (1+1)-ES using isotropic mutations minimizes positive definite quadratic forms." Theoretical Computer Science 361.1 (2006): 38-56.
- Akimoto, Youhei, Anne Auger, and Tobias Glasmachers. "Drift theory in continuous search spaces: expected hitting time of the (1+1)-ES with 1/5 success rule." Proceedings of the Genetic and Evolutionary Computation Conference. 2018.

- Jägersküpper, Jens. "How the (1+1)-ES using isotropic mutations minimizes positive definite quadratic forms." Theoretical Computer Science 361.1 (2006): 38-56.
- Akimoto, Youhei, Anne Auger, and Tobias Glasmachers. "Drift theory in continuous search spaces: expected hitting time of the (1+1)-ES with 1/5 success rule." Proceedings of the Genetic and Evolutionary Computation Conference. 2018.
- Morinaga, Daiki, and Youhei Akimoto. "Generalized drift analysis in continuous domain: linear convergence of (1+1)-ES on strongly convex functions with Lipschitz continuous gradients." Proceedings of the 15th ACM/SIGEVO Conference on Foundations of Genetic Algorithms. 2019.

- Jägersküpper, Jens. "How the (1+1)-ES using isotropic mutations minimizes positive definite quadratic forms." Theoretical Computer Science 361.1 (2006): 38-56.
- Akimoto, Youhei, Anne Auger, and Tobias Glasmachers. "Drift theory in continuous search spaces: expected hitting time of the (1+1)-ES with 1/5 success rule." Proceedings of the Genetic and Evolutionary Computation Conference. 2018.
- Morinaga, Daiki, and Youhei Akimoto. "Generalized drift analysis in continuous domain: linear convergence of (1+1)-ES on strongly convex functions with Lipschitz continuous gradients." Proceedings of the 15th ACM/SIGEVO Conference on Foundations of Genetic Algorithms. 2019.
- Morinaga, Daiki, et al. "Convergence rate of the (1+1)-evolution strategy with success-based step-size adaptation on convex quadratic functions." Proceedings of the Genetic and Evolutionary Computation Conference. 2021.

Theorem (Additive Drift, Upper Bound with Overshooting; Doerr and Kötzing 2021)

Let $(X^{(t)})_{t\in\mathbb{N}}$ be an integrable process over \mathbb{R} , and let

$$T = \inf \left\{ t \in \mathbb{N} \,\middle|\, X^{(t)} \leq \beta
ight\}$$

for some $\beta \in \mathbb{R}$. Furthermore, there is a $\delta > 0$ such that, for all t < T, it holds that

$$0 < \delta \leq \mathbb{E}\left[X^{(t)} - X^{(t+1)} \,\middle|\, X^{(0)}, \ldots, X^{(t)}
ight].$$

Then

$$\mathbb{E}[T] \leq \frac{\mathbb{E}[X^{(0)}] - \mathbb{E}[X^{(T)}]}{\delta}.$$

Theorem (Additive Drift, Upper Bound with Overshooting; Doerr and Kötzing 2021)

Let $(X^{(t)})_{t\in\mathbb{N}}$ be an integrable process over \mathbb{R} , and let

$$T = \inf \left\{ t \in \mathbb{N} \,\middle|\, X^{(t)} \leq \beta
ight\}$$

for some $\beta \in \mathbb{R}$. Furthermore, there is a $\delta > 0$ such that, for all t < T, it holds that

$$0 < \delta \leq \mathbb{E}\left[X^{(t)} - X^{(t+1)} \,\middle|\, X^{(0)}, \ldots, X^{(t)}
ight].$$

Then

$$\mathbb{E}[T] \leq \frac{\mathbb{E}[X^{(0)}] - \mathbb{E}[X^{(T)}]}{\delta}.$$

• Same problem decomposition as for Markov chains.

- Same problem decomposition as for Markov chains.
- Apply additive drift to a potential function

$$V(\|m\|,\theta) = \log(\|m\|) + \Psi(\theta)$$

with $\Psi \geq 0$.

Proof Logic

- Same problem decomposition as for Markov chains.
- Apply additive drift to a potential function

$$V(\|m\|,\theta) = \log(\|m\|) + \Psi(\theta)$$

with $\Psi \geq 0$.

• If V decays by $\delta > 0$ in expectation then at some point $\log(\|m\|)$ decays by $\delta > 0$. We obtain linear convergence at rate $e^{-\delta} < 1$.

Proof Logic

- Same problem decomposition as for Markov chains.
- Apply additive drift to a potential function

$$V(\|m\|,\theta) = \log(\|m\|) + \Psi(\theta)$$

with $\Psi > 0$.

- If V decays by $\delta > 0$ in expectation then at some point $\log(\|m\|)$ decays by $\delta > 0$. We obtain linear convergence at rate $e^{-\delta} < 1$.
- Note: V is unbounded, and single-iteration changes are unbounded.
 Calls for additive drift with overshooting.

• Task: construct a suitable $\Psi(\theta)$.

- Task: construct a suitable $\Psi(\theta)$.
- Task: show that a drift $\delta > 0$ exists.

- Task: construct a suitable $\Psi(\theta)$.
- Task: show that a drift $\delta > 0$ exists.
- The form of $\Psi(\theta)$ with CMA is an open problem.

- Task: construct a suitable $\Psi(\theta)$.
- Task: show that a drift $\delta > 0$ exists.

Achievements

• Correct dependency on dimension and problem characteristics.

Achievements

- Correct dependency on dimension and problem characteristics.
- Convergence rate and duration of the adaptation phase can be bounded.

Achievements

- Correct dependency on dimension and problem characteristics.
- Convergence rate and duration of the adaptation phase can be bounded.
- No analysis of CMA (as of today).

• How to approach this problem? Pull a penalty term Ψ out of the hat and then...? Options:

- How to approach this problem? Pull a penalty term Ψ out of the hat and then...? Options:
 - Deductive approach Try to make the proof work.

- How to approach this problem?
 Pull a penalty term Ψ out of the hat and then...?
 Options:
 - Deductive approach Try to make the proof work.
 - 2 Inductive approach Simulate/approximate the drift to empirically verify that $\delta>0$ exists. Then think about a proof, otherwise refine.

- How to approach this problem?
 Pull a penalty term Ψ out of the hat and then...?
 Options:
 - Deductive approach Try to make the proof work.
 - 2 Inductive approach Simulate/approximate the drift to empirically verify that $\delta>0$ exists. Then think about a proof, otherwise refine.
- Which route should we take?

- How to approach this problem?
 Pull a penalty term Ψ out of the hat and then...?
 Options:
 - Deductive approachTry to make the proof work.
 - 2 Inductive approach Simulate/approximate the drift to empirically verify that $\delta>0$ exists. Then think about a proof, otherwise refine.
- Which route should we take?

"It depends on how fast you think."

- How to approach this problem?
 Pull a penalty term Ψ out of the hat and then...?
 Options:
 - Deductive approachTry to make the proof work.
 - 2 Inductive approach Simulate/approximate the drift to empirically verify that $\delta > 0$ exists. Then think about a proof, otherwise refine.
- Which route should we take?

"It depends on how fast you think."

• I decided to take the inductive route.

- guess a potential function
- estimate drift on a grid in state space (Monte Carlo simulation)
- visualize the result

Optimal (Canonical) Drift

• There is a very simple way of realizing optimal additive drift: **define** the potential to be the expected hitting time.

Optimal (Canonical) Drift

- There is a very simple way of realizing optimal additive drift: **define** the potential to be the expected hitting time.
- The construction yields an optimally tight (lower and upper) bound using only simple additive drift.

Optimal (Canonical) Drift

- There is a very simple way of realizing optimal additive drift: **define** the potential to be the expected hitting time.
- The construction yields an optimally tight (lower and upper) bound using only simple additive drift.
- Problem: the potential V is not an explicit function of the state (m, σ, C) no closed form expression.

(1+1)-EA on OneMax

(1+1)-EA on LeadingOnes

(1+1)-EA on BinaryValue

Canonical Drift on the Grid

- Transfer the canonical potential paradigm to the grid approach!
- **2** Ansatz: Ψ is parameterized by values on the grid + linear interpolation.
- **3** Using MC simulation data, we can solve the system.

(1+1)-ES on Sphere

(1+1)-ES on Sphere

• Choice of the grid (range and density) turn out to be uncritical.

- Choice of the grid (range and density) turn out to be uncritical.
- Replaced MC integration with a "proper" numerical scheme with a-priori controlled error.

- Choice of the grid (range and density) turn out to be uncritical.
- Replaced MC integration with a "proper" numerical scheme with a-priori controlled error.
- Floating point errors are currently ignored.

- Choice of the grid (range and density) turn out to be uncritical.
- Replaced MC integration with a "proper" numerical scheme with a-priori controlled error.
- Floating point errors are currently ignored.
- Controlled effect of integration error on the penalty term.

Towards Provable Drift

• We aim to turn the technique into a computer-assisted proof.

Towards Provable Drift

- We aim to turn the technique into a computer-assisted proof.
- Interpolation: Lipschitz constant of the drift controls gaps in between grid points.

Towards Provable Drift

- We aim to turn the technique into a computer-assisted proof.
- Interpolation: Lipschitz constant of the drift controls gaps in between grid points.
- Extrapolation: control asymptotic effects beyond the grid.

Towards Provable Drift

- We aim to turn the technique into a computer-assisted proof.
- Interpolation: Lipschitz constant of the drift controls gaps in between grid points.
- Extrapolation: control asymptotic effects beyond the grid.
- Only possible in low dimensions (likely only n = 2).

It is possible to analyze CMA this way.
 A first study (Bachelor thesis) is on its way.

- It is possible to analyze CMA this way.
 A first study (Bachelor thesis) is on its way.
- Convergence rate and duration of the adaptation phase can be bounded.

- It is possible to analyze CMA this way.
 A first study (Bachelor thesis) is on its way.
- Convergence rate and duration of the adaptation phase can be bounded.
- No (analytic) dependency on parameters (dimension, problem instance).

- It is possible to analyze CMA this way.
 A first study (Bachelor thesis) is on its way.
- Convergence rate and duration of the adaptation phase can be bounded.
- No (analytic) dependency on parameters (dimension, problem instance).
- Computationally feasible only in dimension 2.

• The analysis of CMA-ES is progressing significantly.

- The analysis of CMA-ES is progressing significantly.
- Convergence is solved!

- The analysis of CMA-ES is progressing significantly.
- Convergence is solved!
- Drift for CMA-ES would be a valuable addition...

- The analysis of CMA-ES is progressing significantly.
- Convergence is solved!
- Drift for CMA-ES would be a valuable addition...
- ...but it is still an open problem.

Thanks

Stephan Frank

Alexander Jungeilges

Thank you!

Questions?